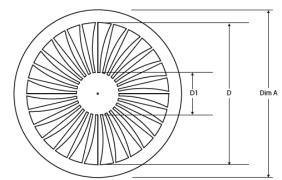

ODS SWIRL DIFFUSER

Suitable for ceiling mounting and and can be manufactured to suit most ceiling tile arrangements. The blade pattern is designed to offer high induction of room air and the rapid decay of supply air velocities and temperature differentials.



vices

Diffuser Dimensions - Square

Nom Size	O/A	D	D1
254	595 x 595	254	84
350	595 x 595	350	92
450	595 x 595	450	150
540	595 x 595	540	170

Diffuser Dimensions - Circular

Nom Size	AØ	С	D1
254	300	254	84
350	400	350	92
450	500	450	150
540	600	540	170

How To Order

Туре	No of Blades	Edge Detail	Tegular Depth	Size	Overall Size	RAL Colour
ODS	28	L - Lay-In Grid T15 - Tegular 584 x 584 T24 - Tegular 574 x 574 M - Clip-In Metal Tile C - Circular	e.g. 14mm	254 350 450 540	595 x 595 599 x 599	e.g. RAL 9010
e.g. 10 No ODS - 28 - L - 450 - 595 x 595 - RAL 9010						

ODS SWIRL DIFFUSER

Performance Data

Size										
254 Dia	/s	20	25	30	35	40	45	50	55	60
	Throw m	0.6 - 1.1	0.7-1.4	0.8-1.7	1.0-1.9	1.1-2.2	0.2-2.5	1.4-2.8	1.5-3	1.6-3.3
	Pa	3	5	8	11	14	18	22	26	31
	NC					16	20	23	25	28
	l/s	65	70	75	80					
	Throw m	1.8-3.6	1.9-3.9	2.0-4.1	2.2-4.4					
	Pa	37	43	49	56					
	NC	30	32	34	36					
	l/s	50	55	60	65	70	80	90	100	110
	Throw m	1.0-2.1	1.2-2.3	1.2-2.5	1.3-2.7	1.4-2.9	1.6-3.3	1.9-3.8	2.0-4.2	2.3-4.6
	Pa	6	7	9	10	12	16	20	25	30
350 Dia	NC				15	17	21	24	27	30
550 Dia	l/s	120	130	140	150	160				
	Throw m	2.6-5.0	2.7 - 5.4	2.8 - 5.8	3.2 - 6.3	3.5 - 6.7				
	Pa	35	41	48	55	63				
	NC	32	35	37	39	40				
	l/s	75	80	90	100	110	120	130	140	150
	Throw m	1.2-2.5	1.3-2.7	1.6-3.1	1.7-3.4	1.8-3.7	2.0-4.0	2.1-4.4	2.4-4.7	2.5-5
	Pa	9	11	14	17	20	24	28	33	38
450 Dia	NC	16	18	21	24	27	29	32	34	36
450 Dia	l/s	160	170	180	190	200				
	Throw m	2.7-5.4	2.9-5.7	3.0-6.1	3.2-6.4	3.3-6.7				
	Pa	43	49	51	61	67				
	NC	37	39	41	42	44				
	l/s	100	110	120	130	140	150	160	170	180
540 Dia	Throw m	1.7-3.4	1.8-3.7	2.0-4.1	2.2-4.4	2.4-4.7	2.6-5.1	2.7-5.4	2.8-5.7	3.2-6.1
	Pa	9	11	13	16	18	21	23	27	30
	NC	16	19	21	24	26	28	29	31	33
	l/s	190	200	210	220	230	240	260		
	Throw m	3.2-6.4	3.5-6.8	3.6-7.1	3.7-7.4	4.0-7.8	4.1-8.1	4.3-8.4		
	Pa	33	37	40	44	49	53	57		
	NC	34	36	37	38	40	41	42		

NOTE:

All throws based on terminal velocities of 0.5 - 0.25 m/s For Return Air Applications Multiply Pa x 0.75, NC Levels remain the same

