

Floor mounted swirl diffusers available in 150mm and 200mm diameter models

Concealed and fully removable swirl blade set and dirt collection tray

 $\frac{1}{4}$ inch thick aluminium core is strong enough to support light foot traffic

Quick and simple to fit

Available polyester powder coated to any RAL or BS colour

Floor swirl diffusers are specially reinforced units, providing an effective method of supplying air to areas like open plan offices. Suitable for any sort of raised flooring, and available in 150mm and 200mm diameter models.

Constructed from four main components:

Outer ring

Manufactured from cast aluminium, the outer ring is the main support for the rest of the unit. It also holds the three clips which secure the unit into the floor.

Also from cast aluminium, this perforated 6.4mm thick section is strong enough to support light foot traffic. Fully removable from the outer ring, and fitted with a captive bolt from which the deflector set and dirt catchment tray are mounted.

Swirl deflector set

Polyester powder coated matt black, this is screwed onto the captive bolt on the underside of the inner core and provides the swirling throw required for good mixing of supplied and resident

Dirt catchment tray

Hung underneath the swirl set, the dirt catchment tray is designed to catch any dirt or debris which may fall through the inner core, ensuring floor voids are kept clean, and making maintenance easier.

Design features

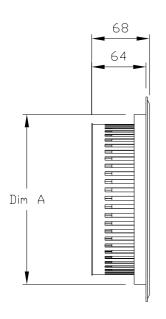
Material Cast aluminium fascia plate and outer ring

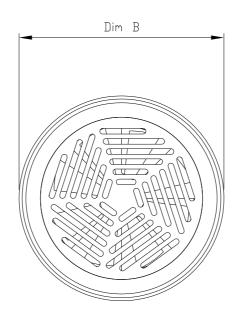
Galvanised steel dirt collection pan and swirl blade set (powder coated matt black)

Sizes 150mm and 200mm diameter

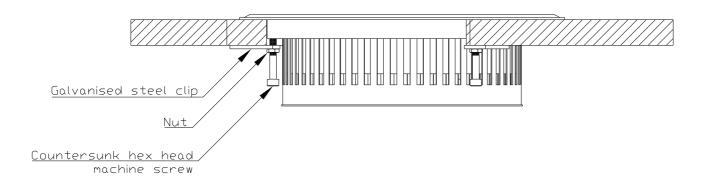
Core Removable to allow cleaning and fitting

Standard: Cast alumium **Finish**


Optional: See page 4


Mass per unit Approx 1 kg

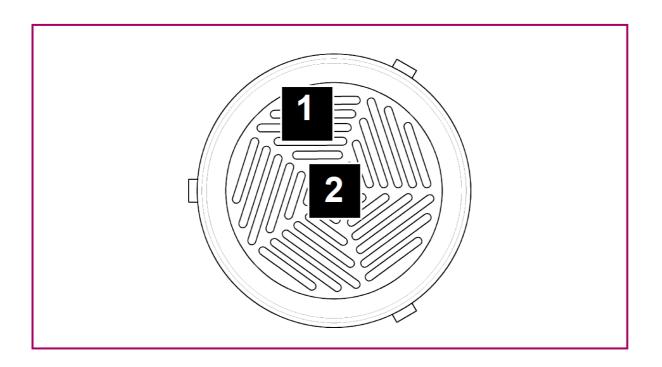
Technical drawings



	Dim A (mm)	Dim B (mm)
FCFS 150	150	190
FCFS 200	200	240

Fitting

Fitting is quick and simple.


- Fit the three steel clips into position using the tapped holes in the underside of the outer ring and the nuts and machine screws.
- Turn the clips to face inside the outer ring, and then lay it into a pre-cut hole in the floor.
- Turn the steel clips 180 degrees so they protrude from the outer ring to sit underneath the floor tile.
- Adjust the machine screw and nut to secure the outer ring to the floor.
- Lay in the assembled inner core, swirl set and dirt tray.

DIFFUSER LOAD CAPACITY

Model	Size	Position 1	Position 2
JCFS	Ø 150	2,9	2,5
3013	Ø 200	2	2,25

Load in kN

According to the requirements of European test standard EN 13264:2001, over 30 x 30 \mbox{mm}^2 area.

Selection table

Circular floor diffuser DSA									
		Size	150			200			
Q		$A_k (m^2)$	0,00495			0,00945			
(m³/h)	(l/s)	ΔT (°C)	-4	-6	-8	-4	-6	-8	
30	8,3	h _{0.25} (m)	0,8	0,7	0,6				
		V _k (m/s)		1,7					
		ΔP_{est} (Pa)		6					
		L _w - [dB(A)]		<20					
35	9,7	h _{0.25} (m)	0,9	0,8	0,7				
		V _k (m/s)		2,0					
		∆P _{est} (Pa)		8					
		L_W - [dB(A)]		22					
40	11,1	h _{0.25} (m)	1,1	0,9	0,8				
		V _k (m/s)		2,2					
		ΔP_{est} (Pa)		11					
		L _w - [dB(A)]		25					
45	12,5	h _{0,25} (m)	1,2	1,0	0,9				
		V _k (m/s)		2,5					
		ΔP_{est} (Pa)		13					
		L_W - [dB(A)]		28					
50	13,9	h _{0,25} (m)	1,3	1,2	1,0	0,7	0,6	0,5	
		V _k (m/s)		2,8			1,5		
		∆P _{est} (Pa)		17			3		
		L_W - [dB(A)]		31			<20		
60	16,7	h _{0,25} (m)	1,6	1,4	1,2	0,8	0,7	0,6	
		V _k (m/s)		3,4			1,8		
		$_{\Delta}P_{est}\left(Pa\right)$		24			5		
		L _w - [dB(A)]		35			20		
70	19,4	h _{0,25} (m)	1,9	1,6	1,4	0,9	0,8	0,7	
		$V_k(m/s)$		3,9			2,1		
		ΔP_{est} (Pa)		33			7		
		L_W - [dB(A)]		39			24		

Circular floor diffuser DSA								
		Size	150			200		
(Q .	$A_k (m^2)$	0,00495			0,00945		
(m ³ /h)	(l/s)	ΔT (°C)	-4	-6	-8	-4	-6	-8
85	23,6	h _{0,25} (m)	2,3	2,0	1,7	1,1	1,0	0,9
		V _k (m/s)		4,8			2,5	
		$_{\Delta}\text{P}_{\text{est}}\left(\text{Pa}\right)$		48			10	
		L _w - [dB(A)]		43			29	
100	27,8	h _{0,25} (m)	2,7	2,3	2,0	1,3	1,2	1,0
		V _k (m/s)		5,6			2,9	
		$_{\Delta}\text{P}_{\text{est}}\left(\text{Pa}\right)$		67			14	
		L _w - [dB(A)]		47			33	
115	31,9	h _{0,25} (m)				1,5	1,3	1,2
		V _k (m/s)					3,4	
		ΔP_{est} (Pa)					18	
		L _w - [dB(A)]					36	
130	36,1	h _{0,25} (m)				1,7	1,5	1,3
		V _k (m/s)					3,8	
		$_{\Delta}\text{P}_{\text{est}}\left(\text{Pa}\right)$					23	
		L _w - [dB(A)]					39	
150	41,7	h _{0,25} (m)				2,0	1,7	1,5
		V _k (m/s)					4,4	
		$_{\Delta}\text{P}_{\text{est}}\left(\text{Pa}\right)$					31	
		L _w - [dB(A)]					43	
170	47,2	h _{0,25} (m)				2,3	2,0	1,7
		V _k (m/s)					5,0	
		ΔP_{est} (Pa)					40	
		L _w - [dB(A)]					46	

Q (m³/h) Air flow rate

AK (m²) Effective supply area

 ΔT (°C) Temperature ΔT

 $\mathbf{h}_{0,25}$ (m) Vertical throw for an air velocity of 0,25 m/s

V_K (m/s) Effective supply velocity

ΔP_{est} (Pa) Pressure drop

L_w [dB(A)] Sound power

Finish

Cast aluminium (standard)

Polyester powder coating to any RAL or BS colour

Ordering codes

Example

1 - 200 dia - JCFS

Codes

1)	Quantity		
2)	Size (mm)	150 dia 200 dia	150mm nominal size 200mm nominal size
3)	Series	JCFS	Floor swirl diffuser
4)	Finish	*nothing* RAL BS	Cast alumium (standard) Polyester powder coated to RAL Polyester powder coated to BS

